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ABSTRACT9

AlphaFold-Multimer has greatly improved protein complex structure prediction, but its accuracy also depends on the quality of
the multiple sequence alignment (MSA) formed by the interacting homologs (i.e., interologs) of the complex under prediction.
Here we propose a novel method, denoted as ColAttn, that can identify interologs of a complex by making use of protein
language models (PLMs). We show that ColAttn can generate better interologs than the default MSA generation method in
AlphaFold-Multimer. Our method results in better complex structure prediction than AlphaFold-Multimer by a large margin
(+10.7% in terms of the Top-5 best DockQ), especially when the predicted complex structures have low confidence. We further
show that by combining several MSA generation methods, we may yield even better complex structure prediction accuracy than
Alphafold-Multimer (+22% in terms of the Top-5 best DockQ). We systematically analyze the impact factors of our algorithm
and find out the diversity of MSA of interologs significantly affects the prediction accuracy. Moreover, we show that ColAttn
performs particularly well on complexes in eukaryotes.
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1 Introduction11

Most proteins function in a form of protein complexes1–5. Consequently, obtaining accurate protein complex structures is vital to12

understanding how a protein functions at the atom level. Experimental methods, such as X-ray crystallography and cryo-electron13

microscopy, are costly and low-throughput, and require intensive efforts to prepare samples for structure determination. The14

computational methods, termed as protein complex prediction (PCP) or protein-protein docking, is an attractive alternative for15

solving complex structures. PCP takes sequences and/or the unbound structures of individual protein chains as inputs and then16

predicts the bound complex structures. PCP is a fundamental and longstanding challenge in computational structural biology6, 7.17

Various methods have been proposed for PCP, but with limited accuracy. When only sequences are given as inputs, PCP is even18

harder because the unbound structures of individual chains and auxiliary information on the complex interfaces are unavailable.19

Deep learning has enabled substantial progress in quite a few computational structural biology tasks, such as protein20

contact8–10, tertiary structure prediction11–13, and cryo-electron microscopy structure determination14, 15. Recently, AlphaFold-21

Multimer16 has been shown that it outperforms prior protein complex prediction systems, such as the fast Fourier transform-based22

method ClusPro17–19. However, compared to the accuracy of AlphaFold211 on folding monomers, the accuracy of AlphaFold-23

Multimer on predicting the protein complex structures is far from satisfactory. Its success rate is around 70% and the mean24

DockQ score is around 0.6 (medium quality judged by DockQ)18. The most important input feature to AlphaFold-Multimer is25

the multiple sequence alignment (MSA)18, 19. Compared with AlphaFold211 that takes the MSA of a single protein as the input,26

AlphaFold-Multimer needs to build an MSA of interologs for protein complex structure prediction. However, how to construct27

such an MSA is still an open problem for heteromers. It requires the identification of interacting homologs in the MSAs28

of constituent single chains, which may be challenging since one species may have multiple sequences similar to the target29

sequence (paralogs). In this paper, we investigate effective algorithms for constructing MSAs of interologs for heterodimers.30

In the past few years, representation learning via pre-training techniques has been prevailing in different applications22–25.31

Inspired by this, protein language models26–28 (PLMs) have surged as the main regime for protein representation learning built32

on a large amount of protein sequences, which benefits downstream tasks10, 27, 29–31, PLMs can comprehensively capture the33

biological constraints and co-evolutionary information encoded in the sequence, which is a plausible interpretation for their34

impressive performance on various downstream tasks than canonical methods relying on dedicated hand-crafted traits. To this,35

a natural question arises: Can we leverage the co-evolutionary information featured by PLMs to build effective interologs?36

To our best knowledge, we are the first to propose a simple yet effective MSA pairing algorithm that uses the immediate37
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Figure 1. Schematic illustration of ColAttn that builds interologs as the input to AlphaFold-Multimer. Given a pair of
query sequences as input: 1) we first search the UniProt database20 with JackHMMER21 to generate the MSA for each query
sequence, 2) sequences of the same taxonomy rank are grouped into the same cluster, 3) MSA Transformer is applied to
estimate the column attention score between each sequence homolog of MSA with the query sequence. We match two
sequence homologs of the same taxonomy group with similar attention scores from the two query sequences, 4) One interolog
is obtained by directly concatenating two matched sequence homologs, 5) AlphaFold-Multimer takes the interolog MSA as
input to predict the complex structure.

output from protein language models to form joint MSAs, i.e., MSA of interologs. In particular, we leverage column-wise38

attention scores from MSA Transformer27 to identify and pair homologs from MSAs of constituent single chains, coined as39

ColAttn. We conduct extensive experiments on three test sets, i.e., pConf70, pConf80, and DockQ49. Compared with previous40

methods, ColAttn achieves state-of-the-art structure prediction accuracy on heterodimers (+10.7%, +7.3%, and +3.7% in terms41

of the Top-5 best DockQ score over AlphaFold-Multimer on three test sets, respectively). Moreover, we find out that the mixed42

strategies, which combine ColAttn with other MSA pairing methods, significantly improve the structure prediction accuracy43

over the standard single strategy. We further analyze the performance of complexes from eukaryotes, bacteria, and archaea, and44

find out ColAttn performs the best on eukaryotes for which identifying interologs is quite difficult 32, 33. Most strikingly, on45

a few targets where one of the constituent chains is from eukaryotes while the other is from bacteria, ColAttn considerably46

outperforms other baselines (+25% in overall performance over AlphaFold-Multimer), which strongly demonstrates that the47

PLM-enhanced MSA pairing method is effective, and also robust for targets from different superkingdoms. Then we exposit48

that the diversity of interologs has a significant positive correlation with the prediction accuracy. Lastly, we explore other49

approaches that utilize the output of MSA Transformer. For example, we take the cosine-similarity score between the sequence50

embeddings as the metric to build interologs, which performs on par with the default protocol used in Alphafold-Multimer.51

Generally, ColAttn is the first simple yet effective algorithm that incorporates the strength of PLMs into tackling the issues of52

identifying MSA of interologs. We believe ColAttn will facilitate the fields of protein structure prediction which highly resorts53

to the co-evolution information hidden in MSA.54

2 Related works55

In this paper, we mainly focus on ab-initio protein complex structure prediction, i.e., predicting the complex structure without56

prior information on the binding interfaces of the target complex. Global search methods, such as fast-Fourier transform based57

methods like ClusPro17, PIPER34, and ZDOCK35 and Monte Carlo sampling-based methods like RosettaDock36, have been58

widely used in practice. These methods exhaustively search the conformation space of a complex, and optimize score functions59

to obtain the final structures. Since the conformation space is large, these methods have to make restrictive constraints on the60

search space in order to obtain results within a reasonable amount of time. Typical constraints include reducing the search61

resolutions, making the input monomers rigid bodies, and using score functions that can be quickly evaluated 34, 35. As a62
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result, global search methods have relatively low prediction accuracy and are used with more computationally intensive local63

refinement methods to obtain higher resolution predictions 37.64

In the last decades, co-evolution analysis based contact prediction 13, 38, 39 and structure prediction 18, 19 have made65

substantial progress and demonstrated state-of-the-act accuracy for monomers. These methods utilize the co-evolutionary66

information hidden in MSA to infer inter-residue interactions or three-dimensional structures of the targets. AlphaFold2 is67

the representative method, which has showed unparalleled accuracy in CASP1411. AlphaFold-Multimer, a derived version of68

AlphaFold2 for multimers, has superior accuracy on complex structure prediction18, 19, 40. AlphaFold-Multimer does not make69

the rigid body assumption on input monomers like many FFT-based methods, but it requires constructing an MSA for the target70

complex. In order to infer interfacial contacts, interacting homologs (interologs) of the two input chains need to be identified,71

which is challenging for heteodimers.72

Several algorithms have been proposed to identify putative interologs from genome data, such as profiling co-evolved73

genes41, and comparing phylogenetic trees42. Genome co-localization and species information are two commonly used74

heuristics to form interologs for co-evolution-based complex contact and structure prediction16, 32. Genome co-localization is75

based on the observation that, in bacteria, many interacting genes are coded in operons43, 44 and are co-transcribed to perform76

their functions. However, this rule does not perform well for complexes in eukaryotes with a large number of paralogs, since it77

becomes more difficult to disambiguate correct interologs32, 33. The other phylogeny-based method for identifying interologs is78

first proposed in ComplexContact32 and later similar ideas are adopted by AlphaFold-Multimer. This method first identifies79

groups of paralogs (sequences of the same species) from the MSA of each chain, then ranks the paralogs based on their sequence80

similarity to their corresponding primary chain, and last pairs sequences of the same species and with the same rank together.81

Protein language models27, 28 learn the protein representations that can be used as features into downstream tasks such as82

contact prediction10, 27, remote homology detection29, 30 and mutation effect prediction31. Here we use MSA Transformer27,83

which is trained on a large corpus of single-protein MSAs. The intermediate representations from MSA Transformer are84

shown to capture co-evolution information. As a result, we investigate how to leverage the learned representations from MSA85

Transformer to accurately identify interologs, and further improve the prediction accuracy of AlphaFold-Multimer.86

3 Methods87

In this part, we introduce the framework of our proposed PLMs-enhanced MSA pairing method, i.e., ColAttn. Besides,88

we explore other promising alternative methods built on PLMs that facilitate MSA pairings, such as InterGlobalCos and89

IntraGlobalCos. The overall framework of ColAttn is illustrated in Fig. 1.90

3.1 Overview91

In complex structure prediction, predictors such as AlphaFold-Multimer make use of inter-chain co-evolutionary signals by92

pairing sequences between MSA of constituent single chains of the query complex. Formally, given a query heterodimer, we93

obtain individual MSAs of its two constituent chains, denoted as M1 ∈ A N1×C1 and M2 ∈ A N2×C2 , where A is the alphabet94

used by PLM, N1 and N2 are the number of the sequences in MSAs M1 and M2, and C1 and C2 are the sequence length. The95

MSA pairing pipeline aims at designing a matching or an injection π : [N1]→ [N2] between MSAs from each chain to build the96

MSA of interologs, dubbed as Mπ ∈ A N×(C1+C2), where N is the number of the sequence in the joint MSA. In practice, the97

MSA of interologs Mπ is a collection of the concatenated sequence {concat(M1[i],M2[π(i)]) : i ∈ P}, where P is the indices98

of the sequences from M1 that can be paired with any sequences from M2 according to the matching pattern π . Then MSA of99

interologs is taken by predictors as input to predict the structure of the query heterodimer. Our aim is to leverage the superiority100

of PLMs to explore an effective matching strategy π that facilities the protein complex structure prediction.101

3.2 The PLM-enhanced MSA Pairing Pipeline102

Previous efforts26–28 have confirmed that protein language models (PLMs) can characterize the co-evolutionary signals and103

biological structure constraints encoded in the protein sequence. Moreover, the MSA-based PLMs10, 27 further explicitly104

capture the co-evolutionary information hidden in MSAs via axial attention mechanisms45, 46. In light of this, we adopt the105

state-of-the-art MSA-based PLM, i.e., MSA Transformer27, as the basis to explore how to utilize them to build rational MSA of106

interologs to improve the protein complex prediction based on Alphafold-Mutimer16.107

Column Attention (ColAttn). The column attention weight matrix, which is calculated via each column of MSA via
MSA Transformer, can be treated as the metric to measure pairwise similarities between aligned residues in each column.
Formally, for each chain, we have the MSA M ∈ A N×C. The collections of column attention matrices are denoted as
{Alhc ∈ RN×N : l ∈ [L],h ∈ [H],c ∈ [C]}, where L is the number of layers in PLM, H is the number of attention heads of each
layer, and C is the sequence length, i.e., the number of residues of each sequence. We first symmetrize each column attention
matrix, and then aggregate the symmetrized matrices along the dimension of L, H and C to obtain the pairwise similarity matrix
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among the sequences of MSA, denoted as S ∈ RN×N (Eq.(1)). S is symmetric and its first row S1 ∈ R1×N can be viewed as
measuring similarity scores between the query sequence and other sequences in the MSA,

S = AGG
l∈[L],h∈[H],c∈[C]

{Alhc +(Alhc)
⊤}, (1)

where ⊤ represents the transpose operation and AGG is an entry-wise aggregation operator such as entry-wise mean operation108

MEAN(·), sum operator SUM(·), etc. Unless otherwise specified, AGG is specified as SUM(·) in this paper.109

The MSA pairing strategy is specified as follows, for a query heterodimer, we first obtain S1 of individual MSAs of110

constituent single chains. Then we group sequences from the MSA by their species, and rank sequences according to their111

similarity score of S1 in each MSA, respectively. Finally, the sequences of each MSA with the same rank in the same species112

group are concatenated as interologs.113

Cosine Similarity. The cosine similarity measurement has been thoroughly explored by pre-train language models47, 48.114

Intuitively, as PLMs generate residue-level embeddings for each sequence in the MSA, the sequence embedding can be directly115

obtained by aggregating all the residue embeddings in the sequence. Thus we can calculate the cosine similarity matrix between116

each sequence to measure their pairwise similarities.117

To be more specific, we specify two MSA pairing strategies, i.e., Intra-ranking (IntraCos) and Inter-pairing, based on the118

cosine similarity measurement between sequence embeddings as follows:119

Intra-ranking (IntraCos). Firstly, for all sequences from a given MSA M ∈ A N×C, we obtain a collection of residue-level120

embedding {Eln ∈ RC×d : l ∈ [L],n ∈ [N]}, where d is the embedding dimension. For sequence n ∈ [N], we can obtain its121

sequence-level embeddings En = AGGl∈[L],c∈[C](Elnc) by aggregating over all layers L and all residues C, where En ∈Rd . Then122

we compute cosine similarities between the query sequence embedding, E1, and other sequence embeddings, {En, where123

n ̸= 1}, in the MSA to obtain the pairwise similarity score matrix (IntraCosScore) S1 ∈ R1×N . After that, we build interologs124

like ColAttn does.125

Inter-ranking. Instead of ranking sequences in each MSA and matching sequences of the same rank, here we directly126

compute the similarity score matrix between sequences from different MSAs. Formally, given two MSAs M1 ∈ A N1×C1 and127

M2 ∈ A N2×C2 , we obtain two individual collections of sequence embeddings {E(1)
n : n ∈ [N1]} and {E(2)

n : n ∈ [N2]}. The128

inter-chain cosine similarity matrix is denoted by B ∈ RN1×N2 , where Bi j = cos(E1[i],E2[ j]). Without loss of generality, we129

assume Ni ≤ N j, we propose two algorithms to build interologs as follows:130

1. Global Maximization Optimization (InterGlobalCos). We formalize the pairing problem as a maximum-weighted131

bipartite matching problem. The weighted bipartite G = (V,E) is constructed as follows: sequences from individual132

MSAs of two chains form the set of vertices in G, i.e., V (1) = {M(1)
i ∈ A C1 : i ∈ [N1]}, V (2) = {M(2)

j ∈ A C2 : j ∈ [N2]},133

and V = V (1) ∪V (2). There are no edges among sequences from the same chain MSA, thus V (1) and V (2) are two134

independent sets. There is an edge ei j between M(1)
i and M(2)

j if these two sequences are from the same species; the135

weight associated with ei j is Bi j. An optimal MSA matching pattern can be obtained by Kuhn-Munkres (KM) algorithm49
136

in the polynomial time.137

2. Local Maximization Optimization (InterLocalCos). KM algorithm finds a global optimal solution. However, as138

suggested by50, in each species, the sequence that is most similar to the query sequence may be more informative, while139

other sequences that are less similar may add noises. Thus we propose a greedy algorithm that focuses on pairs that have140

high similarity scores with the query sequence. We iteratively select a pair of sequences (i, j) that have the largest score141

in B among sequences that have not been selected before until reaching a pre-defined maximal number of pairs.142

Complex Structure Prediction of Heteromers with More than Two Different Chains. The proposed methods, such as143

ColAttn and IntraCos, can be easily extended to build MSA of interologs for heteromers with more than two different chains.144

In practice, we can rank the MSAs in each query sequence by the similarity matrix obtained by the corresponding metric, then145

we match them of the same rank in each species to build effective interologs.146

4 Experiments147

In this section, we explain detailed experimental settings (Section 4.1) and show that our proposed methods obtain better148

complex prediction accuracy than previous MSA pairing methods (Section 4.2). We find out the mixed strategy showcase the149

excellent performance that the default single strategy (Section 4.3). We further quantitatively analyze several key factors and150

hyperparameters that may impact the performance of our method, and also explore the capability of different measurements to151

distinguish acceptable predictions from unacceptable ones (Section 4.4).152
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Table 1. DockQ scores and Success Rate of PLM-enhanced Pairing Methods and Baselines. We report the average of
Top-5 Best DockQ score, Top-1 Best DockQ score, and Success Rate (DockQ≥0.23) on pConf70, Quality49, and pConf80 test
sets. For one test target, we predicted 5 different structures using the five AlphaFold-Multimer models. Subscript in red
represents the performance gain of our method over the default MSA pairing strategy in Alphafold-Multimer (%).

Methods pConf70 Quality49 pConf80

Top-5 Top-1 SR (%) Top-5 Top-1 SR (%) Top-5 Top-1 SR (%)

Non-Pairing Methods

Block 0.199 0.179 30.4 0.212 0.194 49.0 0.351 0.319 51.2

Baseline Pairing Methods

Genome 0.215 0.182 33.7 0.219 0.195 49.0 0.377 0.346 54.7
AF-Multimer 0.234 0.203 42.4 0.247 0.219 58.0 0.408 0.369 62.5

PLM-enhanced Pairing Methods

InterLocalCos 0.218 0.180 33.7 0.236 0.210 52.3 0.389 0.353 56.5
InterGlobalCos 0.224 0.182 35.9 0.229 0.206 52.9 0.391 0.350 57.1
IntraCos 0.235 0.199 37.0 0.251 0.219 54.8 0.400 0.362 58.3

ColAttn 0.259
(+10.7)

0.214
(+5.4)

42.4
(+0.0)

0.265
(+7.3)

0.235
(+7.3)

58.7
(+1.2)

0.423
(+3.7)

0.378
(+2.4)

63.1
(+1.0)

4.1 Experimental Setup153

Evaluation Metric. We evaluate the accuracy of predicted complex structures using DockQ51, a widely-used metric in the154

computational structural biology community. Specifically, for each protein complex target, we calculate the highest DockQ155

score among its top-N predicted models selected by their predicted confidences from Alphafold-Multimer. We refer to this156

metric as the best DockQ among top-N predictions.157

Datasets. In order to investigate how improving pairing MSAs can improve the performance of AlphaFold-Multimer, we158

construct a test set satisfying the following criteria:159

1. There are at least 100 sequences that can be paired given the species constraints.160

2. The two constituent chains of a heterodimeric target share < 90% sequence identity.161

We select heterodimers consisting of chains with 20∼1024 residues (due to the constraint of MSA Transformer and162

also ignore peptide-protein complex), and the overall number of residues in a dimer is less than 1600 (due to GPU memory163

constraint). We use the default AlphaFold-Multimer MSA search setting to search the UniProt database20 with JackHMMER21,164

which is used for MSA pairing. We also search the Uniclust30 database52 with HHblits53, which is used for monomers, i.e.,165

block diagonal pairing. We further select those heterodimers with at least 100 sequences that can be paired by AlphaFold-166

Multimer’s default pairing strategy. We define two dimers as at most x% similar, if the maximum sequence identity between167

their constituent monomers is no more than x%. Overall, we select 801 heterodimeric targets from PDB that are at most 40%168

similar to any other targets in the dataset, and satisfy the aforementioned two criteria. Then we use AlphaFold-Multimer (using169

the default MSA matching algorithm) to predict their complex structures. Based on their predicted confidence scores (pConf) or170

DockQ scores, 92 targets with their pConf less than 0.7 are denoted as the pConf70 test set. We select 0.7 as the low confidence171

cutoff based on our fitted logistic regression models over 7,000 DockQ and pConf pairs, because the conditional probability of172

the model having medium or better quality given pConf equals 0.7 is slightly greater than 0.5 (around 0.6), while the probability173

is less than 0.5 if pConf equals 0.6. For more comparisons, we also select 0.8 as the cutoff, which results in the pConf80 test set174

of 168 targets, and 155 targets with their predicted DockQ scores less than 0.49 are denoted as the DockQ49 test set.175

Baselines. Several heuristic MSA pairing strategies have been developed for protein complex contact and 3D structure176

prediction12, 19.177

Phylogeny-based method. The strategy is first proposed in ComplexContact32 for complex contact prediction and is widely178

adopted by the community. AlphaFold-Multimer employed a similar strategy. This strategy first groups sequences in an MSA179

by their species and then ranks sequences of the same species by their similarity to the query sequence. When there is more than180

one sequence in a species group, it joins two sequences of the same rank within the same species group to form an interolog.181

AlphaFold-Multimer uses this strategy and shows state-of-the-art accuracy in complex structure prediction16. Practically, we182
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Figure 2. The Comparisons about DockQ among ColAttn, AF-Multimer, and Genome on three domains. We compare
the DockQ score among ColAttn, AF-Multimer, and Genome on Eucaryote, Eubacteria, and Eucaryote&Eubacteria domains.
The Euca.&Euba. is a special domain means the two constituent chains in the heterodimer belong to the two domains
respectively. Specifically, the heterodimers of our dataset are from Eucaryotes, Eubacteria, Viruses, Archaea,
Eubacteria:Eucaryotes respectively. In all test sets, ColAttn significantly outperforms other two baselines on the Eucaryote
targets. We category the data from Eubateria, Viruses, and Archaea as the Eubateria domain.
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Figure 3. The correlations between the relative improvements of ColAttn over AF-Multimer and pConf on Quality49.
a. The distribution of predicted confidence score (pConf, x-axis) and the relative improvement (%, y-axis). The red curve is the
visualization of the fitted linear regression model. The Pearson correlation coefficient is about -0.49, which strongly indicates
that with the increasing pConf, the relative improvement of ColAttn over AF-Multimer narrowing. b. We further split five
regions of pConf with the interval of 0.2 and show the improvement distribution in different regions, which demonstrates that
ColAttn performs better on low-confidence targets compared with AF-Multimer.

run the implementation code of Alphafold-Multimer following the default setting of official repertory1. Notably, we only183

evaluate the unrelaxed model without the template information for the time efficiency11.184

Genetic Distances. In bacteria, interacting genes sometimes are co-located in operons and co-transcribed to form protein185

complexes54. Consequently, we can detect interologs by the genetic distance of two genes. This strategy pairs sequences of the186

same species based on the distances of their positions in the contigs, which are retrieved from ENA. In our implementations,187

given a sequence from the first chain, we pair it with the sequence from the second chain that is closest to it in terms of genetic188

distance. If there are more than one closest sequence, we select the one that has the lowest e-value to the query sequence of the189

second chain; the e-value is calculated by the MSA search algorithm used to construct the chain MSA.190

Block Diagonalization. This strategy pads each chain sequence with gaps to the full length of the complex19. Therefore, each191

sequence in the constructed joint MSA, except for the query sequence, will include non-gap tokens in exactly one chain and192

gap tokens in other chains. By sorting sequences in the joint MSA, we can make non-gap tokens to appear only in the diagonal193

blocks, thus this strategy is termed as block diagonalization. In our implementations, given a sequence from the first (second)194

chain, we append (prepend) non-gap tokens to it until the number of non-gap tokens equals the length of the second (first) chain.195

Running Environment. We conduct the experiments on an Enterprise Linux Server with 56 Intel(R) Xeon(R) Gold 5120196

CPU @ 2.20GHz, and a single NVIDIA Tesla V100 SXM2 with 32GB memory size.197

1https://github.com/deepmind/alphafold
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4.2 Our Method Outperforms Other MSA Pairing Methods on Heterodimer Predictions198

Overall Evaluation. For each test target we predict five 3D structures using Alphafold-Multimer’s 5 models and then report199

the average of Top-k (k=1, 5) Best DockQ score of the predicted structures and the corresponding success rate (SR) in Table 1.200

Our method outperforms the other methods. To be specific, our method outperforms the AF-Multimer’s default MSA pairing201

strategy on all three test sets (0.259 vs. 0.234 on pConf70, 0.423 vs. 0.406 on pConf80, and 0.265 vs. 0.242 on Quality49, in202

term of Top-5 DockQ score). Our experimental results confirm that our proposed column-wise attention based MSA pairing203

method is better than 1) the sequence similarity-based method used in AF-Multimer, and 2) the cosine similarity-based method204

based on the mixed noisy residue embedding (i.e., IntraCos in Table 1)205

Among all the MSA pairing methods, block diagonalization performs the worst (-30% compared with ColAttn in terms of the206

average of Top-5 best DockQ). The result indicates that the inter-chain co-evolutionary information helps with complex structure207

prediction. Among MSA pairing baselines, AF-Muiltmer surpasses genetic co-localization by a large margin (+12.8% Top-5208

DockQ). Most strikingly, all the proposed PLM-enhanced pairing methods substantially outperform the block diagonalization209

and the genetic-based methods. Moreover, even though AF-Multimer may have overly optimistic performance using the default210

pairing method since the training MSAs are built using it, Intra-Cos MSA pairing method performs on a par with AF-Multimer,211

and ColAttn further exceeds it by a large margin (+4.2∼10.7% Top-5 DockQ score over three test sets).212

Intra-ranking Methods are Superior to Inter-ranking Ones Both in Effectiveness and Scalability. From Table. 1, we can213

also see inter-ranking methods like InterLocalCos and InterGlobalCos underperform the intra-ranking ones, i.e. IntraCos and214

ColAttn. We speculate that as MSA Transformer pre-trains in the monomer data, it merely has the capability of extracting215

the co-evolutionary information within MSA of the single chain via intra-ranking regimes, while fails to directly capture the216

underlying correlations across the constituent chains in the complex. Besides heterodimers, when it extends to predict the217

structure of multimer with more than two chains, intra-ranking strategies are the self-contained methods that only need to rank218

the MSAs in each single chain, and then match MSA of the same rank with other chains to build effective interologs with219

time complexity of O(N), where N is the depth of MSA. While the inter-pairing strategies suffer from the exponential growth220

of combinations with increasing interacting chains with the time complexity O(Nr), where r is the number of chains in the221

multimer. Thus, intra-ranking methods are more time-efficient and scalable than inter-ranking ones.222

ColAttn Performs Better on Low pConf Targets. As shown in Table. 1, the performance gap between ColAttn and223

AF-Multimer becomes narrower on pConf80 than on pConf70, with improvement ratio from 3.7% to 10.7%. To take an224

in-depth analysis, we quantitatively analyze the correlations between the predicted confidence score (pConf) estimated by225

AF-Multimer and the performance gap of the average of Top-5 Best DockQ score between ColAttn and AF-Multimer on226

Quality49, as illustrated in Fig. 3. The relative improvement is negatively correlated (Pearson Correlation Coefficient is -0.49)227

with the predicted confidence score. When pConf is less than 0.2, the relative improvements even achieve 100%, while when228

pConf is more than 0.8, ColAttn performs nearly on par with AF-Muiltimer. This is because AF-Multimer can do well on a229

relatively easier target, it is very challenging to further improve it.230

ColAttn Has the Higher Prediction Accuracy on Eucaryote Targets. We further compare the DockQ distribution of231

ColAttn, AF-Multimer, and Genome on three kingdoms, i.e. Eucaryote, Eubacteria, and Eucaryote&Eubacteria, as shown in232

Fig. 2, we can see that ColAttn rivals the other two MSA pairing methods on the Eucaryotes data by a large margin (0.420 for233

ColAttn, 0.402 for AF-Multimer, and 0.369 for Genome on the overall data). As we all know that it is notoriously different to234

identify homologous protein sequences for the Eucaryotes data, ColAttn has a desirable property to build effective interologs235

on the Eucaryotes. While in the Eubacteria data, three strategies have similar performance (around 0.35 on the whole data).236

Most strikingly, we find ColAttn has an extraordinary performance on the Euba.&Euca data over the other two methods (0.394237

for ColAttn, 0.314 for AF-Multimer, and 0.277 for Genome on the overall data).238

Moreover, we check the performance gap for each target from the Euba.&Euca data. ColAttn performs significantly better239

on the three out of six targets, 0.443 (ColAttn) versus 0.013 (AF-Multimer) on 5D6J, 0.289 versus 0.201 on 6B03, and 0.864240

versus 0.854 on 7AYE. Besides, ColAttn performs on par with AF-Multimer on the other three targets. These results shed light241

on the robustness of protein language models (PLMs). As PLMs are pre-trained on billions of protein data26–28, it can break242

the bottleneck that other hand-crafted MSA pairing methods, such as genetic-based methods, phylogeny-based methods, etc,243

which merely take effect in the specific domain. While our proposed PLMs-enhanced methods can identify the co-evolutionary244

signals effectively to build MSA of interologs across different superkingdoms.245

We visualize four PDB targets, i.e., 5D6J, 6KIP, 6FYH, and 4LJO, where ColAttn predicts accurate structures while246

AlphaFold-Multimer fails. Among these, 5D6J is the Euba.&Euca hybrid case while others are Eucaryotes. The predicted247

structures are shown in Fig. 4. On 5D6J, 6KIP and 6FYH, ColAttn correctly predicts the binding sites on the receptor and248

places the ligand in the approximately correct relative orientation, while Alphfold-Multimer with its default phylogenetic-based249

pairing method predicts the wrong binding sites on the receptor. On 4LJO, ColAttn and AlphaFold-Multimer predict the binding250

sites on the receptor correctly, while ColAttn predicts the relative orientation between ligand and receptor more accurately.251
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4LJO DockQ=0.73 5D6J DockQ=0.44

6FYH DockQ=0.60 6KIP DockQ=0.50

Receptor Ground Truth Predicted by AF-MultimerPredicted by ColAttn

Figure 4. Structure visualization. 4LJO, 5D6J, 6FYH, and 6KIP are visualized. The DockQ scores of ColAttn’s predictions
are: 0.73, 0.44, 0.60, and 0.50 respectively.The ground truth ligand structures are colored in cyan, the ligand structures
predicted by ColAttn are colored in purple, and the ones predicted by AlphaFold-Multimer are colored in yellow. All predicted
receptors are superimposed on the ground truth receptor. All receptors are colored in gray.

4.3 Mixing Improves the Prediction Accuracy252

From Fig. 5, we found that different MSA pairing methods have their own advantages, even block diagonalization performs253

slightly better than ColAttn on about 30% targets, which implies that they can complement each other. To verify that, we254

combine ten models predicted by any two of the MSA paring methods, then we report the average of Top-5 Best DockQ score,255

as shown in Fig. 6. The mixed strategies, i.e., the green, orange, and red bars, significantly outperform the corresponding256

single strategy, i.e., the blue bars. Specifically, the performance of intra-mixed strategies, i.e., the green bars, surpass the257

corresponding single strategy, for example, the DockQ score of ColAttn + ColAttn is 0.269 versus 0.259 of ColAttn, which258

demonstrates that simply increasing the number of predictions of each model also benefits the structure prediction accuracy259

of each target. Among the inter-mixed strategies, i.e., the orange bars, ColAttn pluses any one of the single strategy always260

have a better performance than the one without ColAttn, for example, the SR of ColAttn + Genome is 44.6% versus 40.4% of261

AF-Multimer + Genome. Finally, mixing all three strategies, i.e., the red bar, reaches the best performance with 0.285 DockQ262

score and 46.8% Success Rate, which motivates us that instead of merely using a single strategy to build interologs, the mixed263

MSA pairing strategy may be the silver bullet to identify more effective interologs.264

4.4 More Analytic Studies of ColAttn: Key Factors, Hyperparameters, and Measurements to Identify High-265

quality Predictions266

In this part, we analytically and empirically investigate the inherent properties of ColAttn. Generally, we find out the diversity267

of the formed MSA of interologs has a strong correlation with the performance of ColAttn. Moreover, we study the effect of268

different layers of MSA Transformer27 on identifying homologs. Lastly, we demonstrate the predicted confidence score output269
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Figure 5. The comparisons of the average of Top-5 Best DockQ score between ColAttn and other MSA pairing
methods on the target from pConf70. The coordinates of each point demonstrate the reported DockQ score of the target
between ColAttn (x-axis) and other methods (y-axis). A point under the diagonal dash line implies ColAttn performs better
than the compared method on this target. The highlight regions represent the incorrect (white), acceptable (blue), medium
(green), and high-quality (pink) predicted models according to DockQ score.
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Figure 6. The average of Top-5 Best DockQ scores of mixed strategies on pConf70. The blue bars represent the
performance of single strategies, where G. stands for Genome, A. is for AF-Multimer, and C. is for ColAttn. ColAttn is the best
with 0.259 DockQ score and 42.4% Success Rate. The green and orange bars show the mixed performance of the two strategies.
Among these, ColAttn + Genome performs the best with 0.277 DockQ score with 44.6% Success Rate. The reb bar implies the
best performance about the mixed of all the three strategies with 0.285 DockQ score with 46.8% Success Rate.

by AlphaFold-Multimer is a rational measurement to discriminate correct predictions from incorrect ones.270

The Diversity about MSA of Interologs Affects the Predicted Structure Accuracy by ColAttn. We investigate the271

connections between the performance of ColAttn and some key factors of the formed MSA of interologs, such as the column-272

wise attention score (i.e., ColAttn score), the number of effective sequences within MSA measured by Meff (i.e., #Meff), the273

number of species (i.e., #Species), and the depth of MSA (i.e., MSA Depth). To be specific, we predict 1,689 heterodimers274

sampled from PDB without filtering and divide them into different regions according to the value of each factor. Notably, for275

ColAttn score, we average the score of each single chain in interolog as its ColAttn score, then re-scaling it in the logarithm276

form, and then averaging ColAttn scores of all interologs from the paired MSA as the final ColAttn score of the target. For277

#Meff, #Species, and MSA Depth, we directly calculate the corresponding statistics based on the interologs.278

The correlations between DockQ score and each of above factors are illustrated in Fig. 7 and Supplement Fig. 8. #Meff,279

#Species, and MSA Depth have a similar trend that the predicted structure accuracy improves with the increasing of these factors.280

It implies that MSA with more diversity represents the more co-evolutional information that benefits structure predictions of281

AF-Multimer, which also meets with previous insights27. Moreover, the increasing ColAttn score results in the decreasing282

structure prediction accuracy. Considering the self-attention mechanism in the protein language model, given a sequence as the283

query, the self-attention mechanism aims at identifying the sequence with high homology affinity, i.e., the sequence with a284

high similarity score10. Therefore, a large ColAttn score indicates the MSA with a low #Meff, which potentially results in285

an inaccurate structure prediction. To justify our speculation, we explicitly characterize the dependency between ColAttn286

score and #Meff, as shown in Fig. 7(c). ColAttn has shown a negative correlation to the #Meff, with the Pearson correlation287

coefficient of -0.70, which elucidates that a higher ColAttn score reflects MSA with lower sequence diversity.288

ColAttn Built on the Last Few Transformer Layers Has the Better Performance. As ColAttn leverages the column-wise289

attention output by MSA-Transformer27 to rank and match interologs, how do the column-wise attention weight matrices by290
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Figure 7. Different factors affect the performance of structure prediction. The correlations between the average of Top-5
Best DockQ score (Y-axis) and (a) the column-wise attention predicted by MSA Transformer, (b) the number of effective
sequences measured by Meff. (c) the distribution of ColAttn score(X-axis) and the number of effective interologs in the paired
MSA (Y-axis). The red curve is the visualization of the fitted linear regression model. The Pearson correlation coefficient is
about -0.70, which strongly indicates that an increasing ColAttn score results in the decreasing number of effective interologs.

different transformer layers affect the efficacy of ColAttn? To answer this, we use the DockQ score of predicted structures as291

the metric to measure the quality of the input interologs built by ColAttn, as shown in Supplement Fig. 10. ColAttn that based292

on the attention output of layer 6 (0.258 DockQ score and 40.2% Success Rate), layer 7 (0.249 and 43.0%), and AVG (0.262293

and 42.2%) perform better than other layers. Overall, the AVG aggregation of all the layers is relatively superior to others,294

thus we use AVG as the default setting of ColAttn. What’s more, ColAttn which built on the last few layers (6-12th) identifies295

homologous sequences more precisely than the former layers (1-5th). The phenomenon is consistent with the empirical insights296

about how to effectively fine-tune the pre-trained language models in the downstream tasks: the last few layers are the most297

task-specific, while the former layers encode the general knowledge of the training data55–57, thus only aggregating latter layers298

may exploiting more homologous information form MSAs. We leave this in future work.299

Predicted Confidence Score as An Indicator to Distinguish Acceptable Models. Practically, besides the substantial300

improved DockQ performance through ColAttn, it is also vital to figure out how to identify the correct models (DockQ≥0.23)301

from incorrect ones18. To achieve this, we also predict all the 1,689 heterodimers via AF-Multimer, then we apply: 1) the302

predicted Confidence Score (pConf), 2) Interface pTM (ipTM), 3). predicted TM-score (pTM), and 4) the number of contacts303

between residues from two chains (the distance of Cβ atoms in the residues from different chains within 8 Å) (Contacts) as the304

metric to rank models, as shown in Supple. Fig. 9. From Fig. 9(a), we find both pConf and ipTM are capable of distinguishing305

acceptable models from unacceptable ones with AUC of 0.97. pTM has a worse performance with AUC of 0.85, as pTM is306

used as the pessimistic predictor to measure the predicted structure accuracy of each single chain, it ignores the interactions307

between chains. Contacts merely count the number of interacting residues from different chains, which hardly indicates the308

accuracy of the predicted structure. pConf and iPTM both consider the structure in both the single chain and interfaces, which309

are considerate indicators to validate the quality of the predicted structure. We further quantify the interplays between pConf310

and DockQ score of the predicted structure, as shown in Fig. 9(b), which further confirms the strong correlations between311

pConf and the structure prediction accuracy.312

5 Discussion & Limitation313

In this paper, we merely consider how to build effective interologs for heterodimers, which broadly benefits biological314

applications depending on the high-quality MSA, such as the complex contact prediction58, 59, complex structure prediction315

discussed in this paper, etc. However, there also have a large proportion of homodimers in biological assemblies. As it is trivial316

to build interologs for them, how to select high-quality MSA for homodimers is a more challenging yet important question.317

Previous work27, 50 has an empirical insight that instead of using the full MSA searched from the protein sequence database, we318

can select a few high-quality MSA following some promisings, such as using the MSA maximizing the sequence diversity27, or319

choosing the MSA owning the largest sequence similarity with the primary sequence50. To date, few efforts have systematically320

investigated the MSA-selection problem. We leave this for future work.321

As we propose a series of MSA paring methods built on the output of PLMs, the representation ability of the PLMs directly322

affects the performance of our proposed methods. In this paper, we choose the state-of-the-art protein language model so far,323

i.e., MSA Transformer27, to support our algorithms. However, it is always worth exploiting the potential correlations between324

different PLM configurations and the performance of our proposed PLM-enhanced methods to identify effective interologs.325
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Although ColAttn has advantages over the default strategy adopted by AF-Multimer in identifying MSA of interologs, their326

success rate is similar. After a deep analysis, we observe ColAttn outperforms AF-Multimer most in acceptable cases (DockQ327

≥ 0.23), however it is notoriously difficult for ColAttn to improve DockQ score of unacceptable cases to be acceptable (Only328

3% targets). As we follow the pipeline of the complex structure prediction via AF-Multimer (Fig. 1), thus the limited ability of329

AF-Mulitmer becomes the bottleneck of the performance of ColAttn. Nevertheless, the above extensive experimental results330

have proved ColAttn consistently outperforms AF-Multimer despite AF-Multimer having an inductive training bias towards its331

default MSA pairing strategy. From the training process of AF-Multimer, we know that the performance of structure prediction332

highly depends on the quality of the input MSA. In light of this, we assume that if AF-Muiltimer can fine-tune, or totally333

train from scratch based on ColAttn’s MSA pairing method, the accuracy of structure predictions may be further improved.334

Moreover, compared with the conventional MSA pairing method that only uses a single strategy to identify interologs, the335

mixed strategy has shown superior performance both in DockQ score and Success Rate without fine-tuning AF-Multimer. We336

assure that the mixed strategy proposes a new perspective on how to comprehensively exploit the co-evolutionary patterns337

among MSA, thus further having a wide impact on the biological algorithms resorting to the input MSA.338

6 Conclusion339

This paper explores a series of simple yet effective MSA pairing algorithms based on pre-trained protein language models340

(PLMs) for constructing effective interologs. To our best knowledge, this is the first time that PLMs are used to construct joint341

MSAs. Experimental results have confirmed the proposed ColAttn significantly outperforms the state-of-the-art phylogeny-342

based protocol adopted by AlphaFold-Multimer. What’s more, ColAttn performs particularly better on targets from eukaryotes343

which are hard to be predicted accurately by AF-Multimer. We further confirm that, instead of using the conventional single344

strategy to build interologs, the mixed MSA pairing strategy can largely improve the structure prediction accuracy. Generally,345

ColAttn has a profound impact on biological applications depending on the high-quilty MSA. In the future, we will continue to346

explore more potential ways to leverage the advantages of PLM in building and choosing MSA. We also looking forward to347

applying our proposed methods to improve current MSA-based applications.348
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5. Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).364

6. Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. Principles of protein- protein interactions: what are the preferred ways for365

proteins to interact? Chem. reviews 108, 1225–1244 (2008).366

7. Nooren, I. M. & Thornton, J. M. Diversity of protein–protein interactions. The EMBO journal 22, 3486–3492 (2003).367

8. Billings, W. M., Morris, C. J. & Della Corte, D. The whole is greater than its parts: ensembling improves protein contact368

prediction. Sci. Reports 11, 1–7 (2021).369

11/15



9. Singh, J., Litfin, T., Singh, J., Paliwal, K. & Zhou, Y. Spot-contact-lm: improving single-sequence-based prediction of370

protein contact map using a transformer language model. Bioinformatics 38, 1888–1894 (2022).371

10. Zhang, H. et al. Co-evolution transformer for protein contact prediction. Adv. Neural Inf. Process. Syst. 34 (2021).372

11. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).373

12. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373,374

871–876 (2021).375

13. Roy, R. S., Quadir, F., Soltanikazemi, E. & Cheng, J. A deep dilated convolutional residual network for predicting376

interchain contacts of protein homodimers. Bioinformatics 38, 1904–1910 (2022).377

14. Si, D. et al. Deep learning to predict protein backbone structure from high-resolution cryo-em density maps. Sci. reports378

10, 1–22 (2020).379

15. Sanchez-Garcia, R. et al. Deepemhancer: a deep learning solution for cryo-em volume post-processing. Commun. biology380

4, 1–8 (2021).381

16. Evans, R. et al. Protein complex prediction with alphafold-multimer. BioRxiv (2021).382

17. Kozakov, D. et al. The cluspro web server for protein–protein docking. Nat. protocols 12, 255–278 (2017).383

18. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein-protein interactions using alphafold2. Nat.384

communications 13, 1–11 (2022).385

19. Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. Af2complex predicts direct physical interactions in multimeric386

proteins with deep learning. Nat. communications 13, 1–13 (2022).387

20. Apweiler, R. et al. Uniprot: the universal protein knowledgebase. Nucleic acids research 32, D115–D119 (2004).388

21. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden markov model speed heuristic and iterative hmm search procedure.389

BMC bioinformatics 11, 1–8 (2010).390

22. Brown, T. et al. Language models are few-shot learners. Adv. neural information processing systems 33, 1877–1901391

(2020).392

23. Qiu, J. et al. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceedings of the 26th ACM393

SIGKDD International Conference on Knowledge Discovery & Data Mining, 1150–1160 (2020).394

24. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language395

understanding. arXiv preprint arXiv:1810.04805 (2018).396

25. Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint397

arXiv:2010.11929 (2020).398

26. Elnaggar, A. et al. Prottrans: towards cracking the language of life’s code through self-supervised learning. bioRxiv399

2020–07 (2021).400

27. Rao, R. M. et al. Msa transformer. In International Conference on Machine Learning, 8844–8856 (PMLR, 2021).401

28. Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein402

sequences. Proc. Natl. Acad. Sci. 118 (2021).403

29. Rao, R. et al. Evaluating protein transfer learning with tape. Adv. neural information processing systems 32 (2019).404

30. Vig, J. et al. Bertology meets biology: Interpreting attention in protein language models. In International Conference on405

Learning Representations (2020).406

31. Meier, J. et al. Language models enable zero-shot prediction of the effects of mutations on protein function. Adv. Neural407

Inf. Process. Syst. 34 (2021).408

32. Zeng, H. et al. Complexcontact: a web server for inter-protein contact prediction using deep learning. Nucleic acids409

research 46, W432–W437 (2018).410

33. Rodriguez-Rivas, J., Marsili, S., Juan, D. & Valencia, A. Conservation of coevolving protein interfaces bridges prokaryote–411

eukaryote homologies in the twilight zone. Proc. Natl. Acad. Sci. 113, 15018–15023 (2016).412

34. Kozakov, D., Brenke, R., Comeau, S. R. & Vajda, S. Piper: an fft-based protein docking program with pairwise potentials.413

Proteins: Struct. Funct. Bioinforma. 65, 392–406 (2006).414

35. Pierce, B. G. et al. Zdock server: interactive docking prediction of protein–protein complexes and symmetric multimers.415

Bioinformatics 30, 1771–1773 (2014).416

12/15



36. Lyskov, S. & Gray, J. J. The rosettadock server for local protein–protein docking. Nucleic acids research 36, W233–W238417

(2008).418

37. Desta, I. T., Porter, K. A., Xia, B., Kozakov, D. & Vajda, S. Performance and its limits in rigid body protein-protein419

docking. Structure 28, 1071–1081 (2020).420

38. Zhou, T.-m., Wang, S. & Xu, J. Deep learning reveals many more inter-protein residue-residue contacts than direct coupling421

analysis. bioRxiv 240754 (2018).422

39. Xie, Z. & Xu, J. Deep graph learning of inter-protein contacts. Bioinformatics 38, 947–953 (2022).423

40. Tsaban, T. et al. Harnessing protein folding neural networks for peptide–protein docking. Nat. communications 13, 1–12424

(2022).425

41. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D. & Yeates, T. O. Assigning protein functions by comparative426

genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. 96, 4285–4288 (1999).427

42. Juan, D., Pazos, F. & Valencia, A. High-confidence prediction of global interactomes based on genome-wide coevolutionary428

networks. Proc. Natl. Acad. Sci. 105, 934–939 (2008).429

43. Feinauer, C., Szurmant, H., Weigt, M. & Pagnani, A. Inter-protein sequence co-evolution predicts known physical430

interactions in bacterial ribosomes and the trp operon. PloS one 11, e0149166 (2016).431

44. Ovchinnikov, S., Kamisetty, H. & Baker, D. Robust and accurate prediction of residue–residue interactions across protein432

interfaces using evolutionary information. elife 3, e02030 (2014).433

45. Ho, J., Kalchbrenner, N., Weissenborn, D. & Salimans, T. Axial attention in multidimensional transformers. arXiv preprint434

arXiv:1912.12180 (2019).435

46. Huang, Z. et al. Ccnet: Criss-cross attention for semantic segmentation. In Proceedings of the IEEE/CVF International436

Conference on Computer Vision, 603–612 (2019).437

47. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations.438

In International conference on machine learning, 1597–1607 (PMLR, 2020).439

48. Gao, T., Yao, X. & Chen, D. Simcse: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821440

(2021).441

49. Munkres, J. Algorithms for the assignment and transportation problems. J. society for industrial applied mathematics 5,442

32–38 (1957).443

50. Si, Y. & Yan, C. Protein complex structure prediction powered by multiple sequence alignment of interologs from multiple444

taxonomic ranks and alphafold2. bioRxiv (2021).445

51. Basu, S. & Wallner, B. Dockq: a quality measure for protein-protein docking models. PloS one 11, e0161879 (2016).446

52. Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic acids447

research 45, D170–D176 (2017).448
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54. Gueudré, T., Baldassi, C., Zamparo, M., Weigt, M. & Pagnani, A. Simultaneous identification of specifically interacting451

paralogs and interprotein contacts by direct coupling analysis. Proc. Natl. Acad. Sci. 113, 12186–12191 (2016).452

55. Durrani, N., Sajjad, H. & Dalvi, F. How transfer learning impacts linguistic knowledge in deep nlp models? In Findings of453

the Association for Computational Linguistics: ACL-IJCNLP 2021, 4947–4957 (2021).454

56. Merchant, A., Rahimtoroghi, E., Pavlick, E. & Tenney, I. What happens to bert embeddings during fine-tuning? In455

Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, 33–44 (2020).456

57. Fayyaz, M., Aghazadeh, E., Modarressi, A., Mohebbi, H. & Pilehvar, M. T. Not all models localize linguistic knowledge in457

the same place: A layer-wise probing on bertoids’ representations. In Proceedings of the Fourth BlackboxNLP Workshop458

on Analyzing and Interpreting Neural Networks for NLP, 375–388 (2021).459

58. Fukuda, H. & Tomii, K. Deepeca: an end-to-end learning framework for protein contact prediction from a multiple460

sequence alignment. BMC bioinformatics 21, 1–15 (2020).461

59. Varnai, C., Burkoff, N. S. & Wild, D. L. Improving protein-protein interaction prediction using evolutionary information462

from low-quality msas. PloS one 12, e0169356 (2017).463

13/15



[0,2) [2,4) [4,6) [6,8)0.0

0.4

0.8
D
oc
kQ

(a) #Species

[0,2) [2,4) [4,6) [6,8) [8,10)0.0

0.4

0.8

D
oc
kQ

(b) MSA Depth

Figure 8. Different factors affect the performance of structure prediction. The correlations between average of Top-5
Best DockQ score (Y-axis) and (a) the number of species, and (b) the depth of matched MSA.
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(a) ROC curve of different metrics.
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Figure 9. Different metrics assessment. a.ROC curve of different metrics of distinguish acceptable cases (DockQ≥0.23)
predicted by ColAttn. b.The distribution of predicted confidences (pConf, x-axis) and DockQ scores (left y-axis). And the
conditional probability of the prediction having DockQ ≥0.23 given pConf. The red curve is the visualization of the fitted
logistic regression model.

10 Supplement Material464

The number of effective interlogs (Meff). It counts the number of non-redundant interlogs in an MSA, which measures the465

amount of homologous information. Here we use the toolkit from RaptorX2 to estimate the value of Meff. Specifically, we set466

70% sequence identity as the cutoff to judge if two interlogs are redundant or not. If the number of interlogs (including itself)467

similar to interlog i is ni, then the weight of interlog i is 1/ni. Finally, Meff is calucated by summing the weight of all interlogs.468

Supplement Experiments. We conduct some additionally experiments listed here.469

2https://github.com/j3xugit/RaptorX-3DModeling
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Figure 10. The average of Top-5 Best DockQ scores of ColAttn based on the different layers of MSA-Transformer on
the pConf70 dataset. AVG means that ColAttn is based on the column-wise attention matrix by averaging the one generated
from all the twelve transformer layers.
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